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a b s t r a c t 

With the increase of the volume of data such as images in web, it is challenging to perform k-means 

clustering on millions or even billions of images efficiently. One of the reasons is that k-means requires 

to use a batch of training data to update cluster centers at every iteration, which is time-consuming. 

Conventionally, k-means is accelerated by using one or a mini-batch of instances to update the centers, 

which leads to a bad performance due to the stochastic noise. In the paper, we decrease such stochastic 

noise, and accelerate k-means by using variance reduction technique. Specifically, we propose a position 

correction mechanism to correct the drift of the cluster centers, and propose a variance reduced k-means 

named VRKM. Furthermore, we optimize VRKM by reducing its computational cost, and propose a new 

variant of the variance reduced k-means named VRKM ++ . Comparing with VRKM, VRKM ++ does not 

have to compute the batch gradient, and is more efficient. Extensive empirical studies show that our 

methods VRKM and VRKM ++ outperform the state-of-the-art method, and obtain about 2 × and 4 ×
speedups for large-scale clustering, respectively. The source code is available at https://www.github.com/ 

YaweiZhao/VRKM _ sofia-ml . 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

K-means clustering has been intensively studied and widely ap- 

plied into various applications, such as image segmentation [1] , 

outlier detection [2] , sense discovery [3] , to name just a few. With 

a group of initialized cluster centers, k-means algorithm alterna- 

tively performs instance partition and the update of cluster centers 

until convergence [4] . As seen, it needs to pass over a batch of in- 

stances in order to update cluster centers at each iteration, which 

is computationally intensive. It prevents traditional k-means algo- 

rithms from being applied into large scale applications. 

To enable the ability of k-means in dealing with large-scale 

applications, the pioneering work in [5] proposes a stochastic 

gradient descent (SGD) variant of k-means in which one instance 

is randomly sampled to update a cluster center at each iteration. 

Compared with the traditional batch k-means, this variant avoids 

scanning all samples when updating the cluster centers, and 

significantly improves the computational efficiency of k-means. 

However, by randomly sampling, this variant usually brings in 

stochastic noise or variance. 1 Such stochastic noise impairs the 

convergence of the objective function, which adversely affects the 

∗ Corresponding author. 

E-mail address: zhaoyawei@nudt.edu.cn (Y. Zhao). 
1 The stochastic noise and variance have equivalent meanings in the paper. 

clustering performance. Recently, a mini-batch variant of k-means 

is proposed in [6] to alleviate this issue. Instead of sampling 

one instance at each iteration, it performs the update of cluster 

centers by randomly sampling a mini-batch instances. As seen, 

the mini-batch variant of k-means is able to effectively decrease 

the stochastic noise while increasing the computational cost in 

calculating the gradient. Some more recently work on SGD such 

as variance reduction technique (SVRG) [7] has been developed to 

decrease the stochastic noise. In SVRG, the parameters are updated 

via the variance reduced gradient whose expectation equals to the 

batch gradient. By this manner, SVRG is able to effectively reduce 

the stochastic noise at the comparable computational cost of 

SGD, and usually demonstrates promising performance in various 

applications. 

One can apply SVRG into k-means to extend its scalability. How- 

ever, we observe that the objective function of k-means is sharply 

divergent at iterations when applying the SVRG directly. The rea- 

son is that the optimization objective of k-means is jointly dom- 

inated by the parameter (cluster centers) and instance partitions 

(clusters). In specific, the cost function and the expectation of its 

gradient corresponding to each cluster are changed with the varia- 

tion of instance partitions. Directly applying SVRG to k-means will 

first search an optimal direction in expectation based on the cur- 

rent partition. After that, the objective function is decreased along 

the direction. However, when the instance partition changes, this 

https://doi.org/10.1016/j.neucom.2018.03.059 
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Fig. 1. The optimum of the cluster center drifts from the white circle to the red circle. In our method, the current cluster center is corrected by using the gradients 

corresponding to the newly-joined instances. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

direction may not be optimal or even not be a decreased one. It is 

called the drift of the cluster centers. As illustrated in Fig. 1 , the 

optimal cluster center drifts when some instances join in the clus- 

ter at the iteration. The direction based on the previous instance 

partition makes the cluster center far from the current optimum. 

Although it is indeed the optimal direction corresponding to the 

previous instance partition, it leads to the increase of the objec- 

tive function for the current instance partition. According to the 

above discussion, we argue that it is not trivial to apply SVRG into 

k-means. 

To make SVRG applicable in k-means, we develop a simple 

while effective mechanism to solve the drift of the optimal pa- 

rameters in this paper. The basic idea is to correct the position 

of the cluster centers when the corresponding instance partitions 

are changed. In specific, the cluster centers are corrected by us- 

ing the gradients corresponding to those newly-joined or newly- 

left instances at every iteration. This idea can be illustrated from 

Fig. 1 . The cluster center is corrected by using the gradients corre- 

sponding to the newly-joined instances. The proposed mechanism 

enables the resultant algorithms to adopt a constant learning rate 

to update the parameters, which guarantees its efficient conver- 

gence. After that, we instantiate two specific algorithms, termed 

as VRKM and VRKM ++ , where VRKM samples an instance ran- 

domly and updates a cluster center by using a variance reduced 

gradient at every iteration. VRKM ++ is more efficient than VRKM 

because it decreases much computational cost of the variance re- 

duced gradient. Comprehensive experiments have been conducted 

on four large-scale datasets. As shown, our algorithms demonstrate 

significant improvements on the efficiency and clustering perfor- 

mance. Especially, VRKM ++ achieves more than 4 × speedup on 

the datasets Oxford and Pittsburgh which contain 12, 534, 635 and 

7, 979, 479 instances, respectively. 

The organization of the paper has been presented as follows. 

Section 2 summaries the related work. Section 3 presents the pre- 

liminaries. Section 4 presents the design of the variance reduced 

k-means. Section 5 presents the optimization of the variance re- 

duced k-means. Section 6 presents the extensive empirical studies. 

Section 7 concludes the paper. 

2. Related work 

Lloyd proposes the batch k-means [8] . Since the classic k-means 

algorithm is slow for large datasets, Bottou and Bengio have pro- 

posed a SGD variant of k-means which updates the cluster centers 

by sampling an instance randomly at every iteration [5] . The SGD 

variant of k-means is efficient to be performed, but its solution is 

a victim of the stochastic noise. We present the reason from an 

optimization view. Generally, an optimization problem is usually 

formulated as 

min 
ω 

f (ω) = 

1 

n 

n ∑ 

i =1 

f i (ω) , (1) 

where f ( ω) is usually denoted by an objective function, training 

loss, loss function or cost function etc equivalently. It is a finite- 

sum optimization objective consisting of n functions, namely f i ( ω) 

with i ∈ { 1 , 2 , . . . , n } . n is the number of instances in the training 

dataset, and ω is the parameter we need to train. The batch gradi- 

ent descent is to update ω by using a batch gradient: ∇f , that is: 

ω t+1 = ω t −η∇ f (ω t ) = ω t −η

( 

1 

n 

n ∑ 

i =1 

∇ f i (ω t ) 

) 

. (2) 

Here, t represents the t th iteration. η represents a learning rate. 

When n is extremely large, the computational cost of the batch 

gradient is very high. Instead of scanning the entire training 

dataset to obtain a batch gradient, SGD updates ω by sampling an 

instance, e.g. x i t with i t ∈ { 1 , 2 , . . . , n } randomly. Here, i t represents 

the index of the picked instance at the t th iteration. Thus, we up- 

date the parameter as: 

ω t+1 = ω t − η∇ f i t (ω t ) . (3) 

SGD is efficient to reduce the objective function because of 

E ∇ f i t (ω t ) = E 

( 

1 

n 

n ∑ 

i =1 

∇ f i (ω t ) 

) 

= ∇ f (ω t ) , (4) 

where E represents the expectation operator with respect to i t . 

However, the stochastic gradient ∇ f i t (ω t ) is usually not equivalent 

to the batch gradient ∇f ( ω t ), which is denoted by the variance or 

stochastic noise. Therefore, SGD usually leads to a low-quality so- 

lution due to the stochastic noise. Generally, a decaying learning 

rate, e.g. η = 

1 
t η0 , is used to reduce the noise where η0 is a con- 

stant. However, it impairs the convergence rate of SGD with the 

increase of the iterations. Sculley proposes a mini-batch variant of 

k-means, which reduces the stochastic noise effectively [6] , but is 

still a victim of the stochastic noise. 

K-means is performed at two phases alternatively. The first 

phase needs to compute the nearest cluster center for every in- 

stance. The second phase needs to update the cluster center. There 

are some excellent work focusing on accelerating k-means at the 

first phrase [9,10] . For example, the triangle inequality and dis- 

tance bounds are usually used to reduce the computational cost at 

the first phase [9,10] . Additionally, some other impressive studies 

present exciting results on accelerating k-means. For instance, the 

binary code learning is used to decrease the memory consump- 

tion, and thus the cost of the distance computation is decreased 

significantly by using Hamming metric [11] . Those great researches 

are orthogonal to our methods, and can be embedded into our 

methods to yield more efficiency development. In the paper, we 

focus on accelerating k-means via variance reduced gradients at 

the second phase. To the best of our knowledge, this paper is the 

first work to improve k-means by using the variance reduction 

technique. 

The variance reduction technique has been widely used in 

variants of SGD to improve the convergence performance [12] . It 

is effective to reduce the stochastic noise caused by the stochastic 

gradient at every iteration. Since their computational cost is com- 

parable to SGD, they can be performed efficiently. Those variants 
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Table 1 

The illustration of symbols and their notations. 

Symbols Notations 

X ∈ R n ×d The data matrix 

X c The instances whose cluster has a center c 

x ∈ R 1 ×d An instance denoted by a d ×1 column vector 

C ∈ R d×K The matrix of cluster centers 

c ∈ R d×1 A cluster center 

c ∗ The optimal cluster center 

K The number of clusters 

v [ c ] The number of instances in the cluster c 

∇ The gradient operator 

∇ f i t The stochastic gradient at the t th iteration 

∇ ̃

 f i t The noise reducer at the t th iteration 

∇ ̃

 f The batch gradient 

E The expectation operator 

γ The variance reduced gradient 

T The epoch size 

η The learning rate 

i t The random number at the i th iteration 

‖ · ‖ The l 2 norm of a vector defaultly 

Fig. 2. The illustration of the basic data structure and operations where the cluster 

center c k is nearest to x i . 

of SGD include SVRG [7] , SAGA [13] , SAG [14] , S2GD [15] , EMGD 

[16] , SVRG++ [17] , AdaSVRG [18] etc. In the paper, we pick a popu- 

lar variant: SVRG to improve k-means due to its simpleness. Other 

advanced variance reduction techniques may be used to further 

the acceleration of k-means, which is left as the future work. 

3. Preliminaries 

In this section, the symbols and their notations are presented 

in Table 1 . The basic data structure and definitions are then pre- 

sented. After that, we present k-means from the optimization view. 

Finally, we present the variance reduction technique used in SVRG. 

3.1. Data structure and basic definitions 

As illustrated in Fig. 2 , the training dataset X is a d ×n matrix, 

where n represents the number of instances, and d is the dimen- 

sion of an instance. The set of instances which belongs to a cluster 

c is denoted by X c . x i with i ∈ { 1 , 2 , . . . , n } represents an instance, 
which is a d -dimensional column vector. c is a d -dimensional col- 

umn vector, which represents the center of X c . ∇f ( c ) represents the 

batch gradient with respect to c . ∇f i ( c ) represents the stochastic 

gradient corresponding to the instance x i . K is the number of clus- 

ters. We use a d ×K matrix C to represent all the K centers such 

that C = [ c 1 , c 2 , . . . , c K ] . 

Define 1 ( Cluster membership for an instance ). Given a cluster cen- 

ter set C = [ c 1 , . . . , c K ] , the nearest cluster center of an instance x 

is denoted by x { C} ∈ R 

d×1 which is one of the K centers. The index 

of the center is denoted by I x { C} which is an integer ranging from 

1 to K . 

Define 2 ( Gradient with respect to x { C }). Given a cluster center set 

C = [ c 1 , . . . , c K ] and an instance x . The gradient with respect to x { C } 

is denoted by ∇ x (C) ∈ R 

d×K . The I x { C} th column of ∇ x ( C ) is x { C} −
x, and the other columns are zeros. 

x { C } represents the nearest center of x . ∇ x ( C ) represents the 

gradient with respect to x { C }. As shown in Fig. 2 , if x i belongs to 

the cluster c k , ∇ x ( C ) is obtained by using the k th column of C to 

subtract x and setting other columns to be 0. There may be a little 

confusion between C and ω in the paper. When we discuss a gen- 

eral optimization problem, its parameter is denoted by ω. When 

we focus on the optimization objective function of k-means, its pa- 

rameter is denoted by C . 

3.2. Optimization view of k-means 

The objective function of k-means clustering is: 

min 
C= { c 1 ,c 2 , ... ,c K } 

1 

2 

K ∑ 

i =1 

∑ 

x ∈ X c i 

‖ c i − x ‖ 

2 
2 . (5) 

Here, K is the number of the clusters, and c i is the nearest clus- 

ter center of x . Both the SGD and mini-batch variants of k-means 

can be thought as optimization methods to solve (5) [4] . As illus- 

trated in Algorithm 1 , when m = 1 holds, Algorithm 1 is the SGD 

Algorithm 1 The previous variant of k-means. 

Require: The number of clusters K. The dataset X . 

1: Initialize every cluster center c with c ∈ C by picking an in- 

stance x from X randomly; 

2: The cluster size v [ c] with c ∈ C is initialized by 0 . 

3: for i = 1 to t do 

4: m instances are picked from X randomly, and stored in M; 

5: for x ∈ M do 

6: Find the nearest cluster center of x , i.e. x { C} ; 
7: for x ∈ M do 

8: c = x { C} ; 
9: v [ c] = v [ c] + 1 ; 

10: η = 

1 
v [ c] ; ♦ Decaying learning rate. 

11: c = c −η(c − x ) ; ♦ Update rule is like that of SGD. 
return c; 

variant of k-means. When m > 1 and m < n hold, Algorithm 1 is the 

mini-batch k-means [6] . Additionally, Line 10 shows that a decay- 

ing learning rate is used. The update rule in Line 11 is performed 

like SGD, where c − x is the stochastic gradient corresponding to x . 

The learning rate η is decayed with the increase of the iterations 

to reduce the stochastic noise. Considering a large number of the 

iterations, it is difficult to make a further progress when η is ex- 

tremely small. Since the stochastic gradient does not equal to the 

batch gradient, both the SGD and mini-batch k-means are the vic- 

tims of the stochastic noise, thus leading to low-quality solutions. 

3.3. SVRG: SGD with the variance reduction technique 

As illustrated in (1) and (3) , a general optimization problem can 

be solved by using SGD. The stochastic gradient in SGD does not 

usually equal to the batch gradient, which leads to the stochastic 

noise. SVRG is effective to reduce the stochastic noise. The key idea 

is to use a variance reduced gradient to update the parameter. The 

variance reduced gradient is 

γ = ∇ f i t −∇ ̃

 f i t + ∇ ̃

 f , (6) 

where i t with i t ∈ { 1 , 2 , . . . , n } is picked randomly. ∇ f i t is a 

stochastic gradient, ∇ ̃

 f i t is a noise reducer, and ∇ ̃

 f is a snapshot 

of the batch gradient. SVRG keeps a good property by designing 

∇ ̃

 f i t and ∇ ̃

 f appropriately, that is: 

lim 

t→∞ 

E γ = lim 

t→∞ 

(
E (∇ f i t − ∇ ̃

 f i t + ∇ ̃

 f ) 
)

= 0 , (7) 

where ∇f is the batch gradient with respect to the current param- 

eter. That is, γ is converged to 0 with the increase of the iterations. 
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Fig. 3. Variance Reduced K-Means (VRKM) is divergent on the dataset: CIFAR-100 

if SVRG is used trivially. 

4. Variance reduced k-means clustering 

In this section, we provide a method to solve the position drift 

problem, and propose a variance reduced k-means named VRKM. 

4.1. Position correction 

Although SVRG is effective to decrease the stochastic noise, it 

is challenging to combine it with k-means. As illustrated in Fig. 3 , 

if SVRG is used in k-means directly, the objective function is in- 

creased, and thus leads to be divergent. The specific meanings of 

symbols and the metric in Fig. 3 are illustrated in the empirical 

studies. 

The reason is that a cluster may be changed between iterations, 

and the instances within a cluster are not fixed. During the itera- 

tions, some new instances may be added into the cluster, and some 

instances may be removed from the cluster. The batch gradient is 

jointly dominated by the cluster center and the partition. It is dif- 

ferent from (1) because that the component functions in (1) are 

fixed. The batch gradient in (1) is completely dominated by its pa- 

rameter ω. This difference leads to the drift of the optimal param- 

eter. As illustrated in Fig. 1 , the cluster center is updated between 

iterations. It is easy to see that some new instances are added 

into the cluster center after an iteration. The cluster center thus 

becomes far from the optimum after the drift of the position. If 

the cluster is updated, the drift of the cluster center always exists, 

which makes it impossible to update the center until convergence. 

We conduct position correction for every cluster center. The 

position correction is shown in Fig. 1 . When the cluster center 

˜ c drifts, it is corrected by the gradients corresponding to those 

newly-joined or newly-left instances. First, when some instances 

are added into the cluster X ˜ c , ˜ c is corrected to be close to those 

newly-joint instances. If some instances are removed from X ˜ c , ˜ c 

is corrected to be far from those newly-left instances. Second, the 

gradients corresponding to other instances are used to avoid ag- 

gressive correction. In other words, all the gradients corresponding 

to the instances are involved to correct the position of ˜ c . The posi- 

tion correction guarantees that the cluster center ˜ c is close to the 

optimum, even though it drifts due to the change of the instance 

partition. As illustrated in Algorithm 2 , the current center ˜ c is cor- 

rected by using all the gradients corresponding to the instances in 

the cluster X ˜ c . 

We then update the cluster centers by using the variance re- 

duced gradient iteratively. The variance reduced k-means denoted 

Algorithm 2 Position correction for the cluster center ˜ c . 

Require: The cluster X ˜ c and its size v . 
1: ∇ ̃

 f ( ̃ c ) = 

1 
v 

∑ 

x ∈ X ˜ c 
( ̃ c − x ) ; ♦ Batch gradient for ˜ c . 

2: ˜ c new ← ˜ c − ∇ ̃

 f ( ̃ c ) ; ♦ ˜ c is corrected. 

3: return ˜ c ; 

by VRKM has been illustrated in Algorithm 3 . The outer loop (Lines 

Algorithm 3 VRKM: variance reduced k-means. 

Require: The number of clusters K. The dataset X . The constant 

learning rate η. The epoch size T . 
1: Initialize every c ∈ 

˜ C with an instance picked from X randomly; 

2: repeat 

3: Update the nearest cluster center for every instance x i with 

i ∈ { 1 , 2 , . . . , n } according to ˜ C , and thus obtain the instance 

partitions { X c 1 ,…, X c K } ; 
4: Conduct position correction for a cluster center c i with 1 ≤

i ≤ K, and obtain ˜ c new 

i 
according to Algorithm 2 

5: C 0 = 

˜ C new = { ̃ c new 

1 
, . . . , ̃  c new 

K 
} , and let X ˜ c new 

i 
= X c i for 1 ≤ i ≤

K; 

6: Obtain x i { ̃  C new } , I x i { ̃ C new } and ∇ x i ( ̃
 C new ) for every instance x i 

with 1 ≤ i ≤ n based on the instance partition { X ˜ c new 
1 

, . . . , X ˜ c new 
K 

} ; 
7: ∇ ̃

 f ( ̃ c new 

i 
) = 

1 
v i 

∑ 

x ∈ X ˜ c new 
i 

( ̃ c new 

i 
− x ) for 1 ≤ i ≤ K; 

8: ∇ ̃

 f ( ̃  C new ) = {∇ ̃

 f ( ̃ c new 

1 
) , ∇ ̃

 f ( ̃ c new 

2 
) , . . . , ∇ ̃

 f ( ̃ c new 

K 
) } ; 

9: for t = 0 , 1 , . . . , T − 1 do 

10: Pick an index i t from { 1 , 2 , . . . , n } randomly; 

11: Find the nearest cluster center from C t for x i t , and thus 

obtain x i t { C t } , I x i t { C t } and ∇ x i t 
(C t ) ; 

12: if x i t { C t } 
 = x i t { ̃  C new } or I x i t { C t } 
 = I x i t { ̃ C new } 
then 

13: γt = ∇ x i t 
(C t ) − ∇ x i t 

( ̃  C new ) + ∇ ̃

 f ( ̃  C new ) ; 

14: C t+1 = C t − ηγt ; 

15: else C t+1 = C t ; 

16: ˜ C = C T ; 

17: until convergence; 

18: return 

˜ C ; 

2–17) represents that VRKM is organized by epochs. Line 3 re- 

quires to scan the entire dataset in order to obtain the nearest 

cluster center for every instance. Meanwhile, the number of in- 

stances within a cluster has been obtained. Line 4 is the position 

correction which solves the position drift of the optimal cluster 

center according to Algorithm 2 . The inner for loop (Lines 9–16) 

means to update the cluster centers by using the variance reduced 

gradient γ t . In specific, Line 13 represents the variance reduced 

gradient. Line 14 shows that the constant learning rate is used to 

update the parameter. 

It is worth noting that ∇ x i t 
(C t ) is obtained based on X C t which 

may be updated at every iteration. But, ∇ x i t 
( ̃  C new ) and ∇ ̃

 f ( ̃  C new ) 

are obtained based on the X ˜ C new which is constant during itera- 

tions in an epoch. Thus, although C 0 = 

˜ C new at t = 0 , the stochastic 

gradients ∇ x i t 
(C t ) and ∇ x i t 

( ̃  C new ) are different if x i t belongs to a 

different cluster against the partition X ˜ C new . 

Compared with previous k-means, i.e. Algorithm 1 , VRKM is or- 

ganized as epochs, and the cluster centers are updated iteratively 

during an epoch. The variance reduced gradient, i.e. γ t is equiv- 

alent to the batch gradient in expectation. Thus, the stochastic 

noise has been decreased effectively. When we pick an instance x i t 
randomly, the stochastic gradient ∇ x i t 

(C t ) and the noise reducer 

∇ x i t 
( ̃  C ) are computed at every iteration. The computational cost 
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is comparable to the SGD variant of k-means. VRKM can be per- 

formed more efficiently. According to Algorithm 2 , the position cor- 

rection needs to compute a stochastic gradient for every instance. 

If those stochastic gradients are saved in memory, the noise re- 

ducer ∇ x i t 
( ̃  C ) does not need to be computed during iteratively up- 

date of the parameter. Thus, the computational cost every iteration 

is decreased at the cost of memory significantly. 

4.2. The constant learning rate 

Benefiting from the position correction mechanism, the vari- 

ance reduced k-means is accelerated by using a constant learning 

rate. The variance reduced gradient equals to the batch gradient in 

expectation according to (7) . As with the increase of iterations, the 

cluster center c t at the current iteration is close to the optimum 

denoted by c ∗ . Since 

η lim 

t→∞ 

E γt 

= lim 

t→∞ 

E C t+1 − lim 

t→∞ 

E C t 

= C ∗ −C ∗ = 0 . 

That is to say, lim 

t→∞ 

( E γt ) = 0 holds when the learning rate η is a 

constant [7] . Benefiting from this property, the variance reduced k- 

means can be accelerated by using a constant learning rate, which 

has a significant advantage over the pervious methods. No matter 

the SGD variant of k-means or the mini-batch k-means, a decaying 

learning rate is used to decrease the stochastic noise. The decaying 

learning rate makes k-means converge very slowly after a number 

of iterations. It is difficult to make a further progress with the in- 

crease of the iteration. This weakness of the previous methods has 

been overcome by using a constant learning rate in the variance 

reduced k-means. Numerical results have verified the advantage of 

the constant learning rate, which is efficient to converge the objec- 

tive function of k-means. 

5. Algorithm optimization 

In this section, a new variant of the variance reduced k-means 

named VRKM ++ is proposed, which decreases much computa- 

tional cost of VRKM. 

5.1. VRKM ++ : VRKM without batch gradients 

VRKM has to compute the batch gradient twice in an epoch. 

The first batch gradient is computed for correcting the position of 

the cluster center (see Line 8 in Algorithm 3 ), and the second is 

used in the variance reduced gradient (see Line 13 in Algorithm 3 ). 

If the batch gradient is stored in memory, the batch gradient needs 

to be computed only once, but it consumes much memory for a 

large dataset. Generally, for a large dataset, both batch gradients 

need to be computed by scanning every instance of the cluster, 

which increases the computational cost. The computation of the 

batch gradient needs to scan the entire dataset, which is time- 

consuming. VRKM ++ is proposed to optimize VRKM, which does 

not lead to the computational cost of the batch gradient. 

VRKM ++ decreases the computational cost by the following 

observation: 

˜ c new ← 

˜ c − ∇ ̃

 f ( ̃  c ) = 

˜ c −
( 

˜ c − 1 

v k 

∑ 

x ∈ X c 
x 

) 

= 

1 

v k 

∑ 

x ∈ X ˜ c 
x = X̄ ˜ c , (8) 

where ˜ c is corrected via the position correction. That is, the current 

cluster center is corrected by the average of the instances in this 

cluster. In fact, we can conduct the position correction by scan- 

ning the cluster only once, and we do not have to compute the 

batch gradient ∇ ̃

 f ( ̃ c ) . First, we obtain the new center ˜ c with ˜ c = X̄ ˜ c 

by scanning the cluster according to (8) . Second, we compute the 

batch gradient immediately, that is, 

∇ ̃

 f ( ̃  c new 

i 
) = 

˜ c new 

i 
− 1 

v i 

∑ 

x ∈ X new 
˜ c i 

x = 0 . (9) 

Based on this observation, the batch gradient, namely ∇ ̃

 f ( ̃  C new ) 

does not have to be computed, thus decreasing much computa- 

tional cost of VRKM. As illustrated in Algorithm 4 , line 4 represents 

Algorithm 4 VRKM ++ : variance reduced k-means without batch 

gradients. 

Require: The number of clusters K. The dataset X . The constant 

learning rate η. The epoch size T . 
1: Initialize each c ∈ 

˜ C with instances picked from X randomly; 

2: repeat 

3: Update the nearest cluster center for every instance x i with 

i ∈ { 1 , 2 , . . . , n } according to ˜ C , and thus obtain the instance 

partitions { X c 1 ,…, X c K } ; 
4: C 0 = 

˜ C new = 

(
X̄ 1 , X̄ 2 , . . . , X̄ K 

)
, and let X ˜ c new 

i 
= X c i for 1 ≤ i ≤ K; 

♦ Position correction. 

5: Obtain x i { ̃  C new } , I x i { ̃ C new } and ∇ x i ( ̃
 C new ) for every instance x i 

with 1 ≤ i ≤ n based on the instance partition { X ˜ c new 
1 

, . . . , X ˜ c new 
K 

} ; 
6: for t = 0 , 1 , . . . , T − 1 do 

7: Pick an index i t from { 1 , 2 , . . . , n } randomly; 

8: Find the nearest cluster center from C t for x i t , and thus 

obtain x i t { C t } , I x i t { C t } and ∇ x i t 
(C t ) ; 

9: if x i t { C t } 
 = x i t { ̃  C new } or I x i t { C t } 
 = I x i t { ̃ C new } 
then 

10: γt = ∇ x i t 
(C t ) − ∇ x i t 

( ̃  C new ) ; 

11: C t+1 = C t − ηγt ; 

12: else C t+1 = C t ; 

13: ˜ C = C T ; 

14: until convergence; 

15: return 

˜ C ; 

the position correction where all the cluster centers are corrected 

by the average of the instances within a cluster. Line 10 means 

that the variance reduced gradient does not need the computation 

of the batch gradient. Benefiting from the optimization, VRKM ++ 

is performed more efficient than VRKM. 

Note that Line 4 in Algorithm 4 is the average of the instance 

within a cluster. As we know, the classic k-mean also uses the aver- 

age of instance to update the cluster centers for the next iteration. 

However, the average strategy in VRKM ++ has the different goal 

from the classic k-means. The average strategy is used to obtain 

the initial cluster centers, i.e. ˜ C new . The new initial cluster centers 

are yielded to update the cluster centers via the variance reduced 

gradients, and will be discarded at the end of the iteration. The 

new-learned cluster center C T will be used to update the cluster 

membership of instances at the next iteration, which is different 

from the classic k-means. 

To make it clear, we illustrate our variance reduced k-means ac- 

cording to Fig. 4 . As shown in the top-left subfigure, the instances 

are partitioned into two clusters. x belongs to the blue cluster and 

its nearest cluster center is c 2 , that is, x { ̃  C } = c 2 . After the posi- 

tion correction, x ’s nearest cluster center is c 1 , namely x { C 0 } = c 1 . 

Thus, the cluster centers are updated via the variance reduced gra- 

dients. As shown in the top-right subfigure, ∇ x (C 0 ) = c 1 − x and 

∇ x ( ̃  C ) = c 2 − x hold. Then, c 1 and c 2 are updated in the bottom-left 

subfigure. Finally, the instances are partitioned into new clusters as 

illustrated in the bottom-right subfigure. 
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Fig. 4. Cluster centers are updated via variance reduced gradients. 

5.2. Parameter settings 

Both VRKM and VRKM ++ are organized as epochs and the en- 

tire dataset needs to be scanned to update the cluster in an epoch, 

which is time-consuming. A large epoch size T helps to make the 

objective function converge efficiently. The epoch size T is usually 

set to be comparable to the size of the training data, e.g. 0.25 n, n , 

or 2 n . Alternatively, the epoch size T can be set by using a heuristic 

method. For example, T can be increased exponentially e.g. T = 2 s 

where s represents the s th epoch. 

The learning rate η is a constant, and needs to be set before 

the start of VRKM. It plays an important role in the performance of 

our methods. A relatively large η helps to improve the convergence 

performance of VRKM. However, VRKM will be divergent when η
is extremely large. Empirically, the constant learning rate can be 

set as η = 

K 
n . Here, K is the number of clusters, and n is the num- 

ber of instances. Note that this setting of the learning rate is con- 

servative. It can be set larger than K 
n for a large dataset to obtain 

the improvement of the convergence performance. Empirical stud- 

ies show that VRKM and VRKM ++ can be performed efficiently by 

using the heuristic method, and outperform their counterparts sig- 

nificantly. 

Additionally, there are some impressive researches investigating 

the settings of those hyper-parameters when using the variance 

reduction techniques [19,20] . Although we do not use those ad- 

vanced methods in VRKM and VRKM ++ , it is not difficult to use 

those methods to set the hyper-parameters including the epoch 

size and the learning rate. For example, the epoch size is set 

heuristically in [19] . An adaptive method to set an optimal learn- 

ing rate is proposed in [20] . The researches can be used to improve 

VRKM and VRKM ++ , and we recommend readers to read the pa- 

pers for more details. 

6. Empirical studies 

In this section, we conduct extensive empirical studies on a 

Red Hat Enterprise 64-bit Linux workstation with 12-core Intel 

Xeon Westmere EP CPU 2.93 GHz and 48 GB memory. Both VRKM 

and VRKM ++ are compared with the batch k-means denoted by 

batch KM [8] , the SGD k-means denoted by SGD-KM [5] , the mini- 

batch k-means denoted by mini-batch KM [6] , and the state-of-the- 

art algorithm denoted by growbatch-rho [9] . As far as we know, 

growbatch-rho is the newest variant of k-means which is related 

to our methods. 

K-means is very sensitive to the initial conditions. The initial 

seeds of k-means usually have significant impacts on the clustering 

result. Before conducting the experiments, we pick the initial seeds 

randomly. After that, the seeds are fixed, and we use them to con- 

duct clustering for all algorithms. It is essential to remove the im- 

pact of the randomness due to the seeds, and to conduct the com- 

parison for all algorithms fairly. Additionally, as we have illustrated 

Table 2 

Statistics of four large-scale datasets. 

Datasets #Instances #Dimension #clusters 

Oxford 12, 534, 635 128 10 0 0 

Pittsbour 7, 979, 479 128 20 0 0 

CIFAR-100 60, 0 0 0 3072 100 

Caltech-256 30, 607 4096 257 

in Section 3.2 , the previous methods including mini-batch KM and 

SGD-KM use the decaying learning rate. In other words, their learn- 

ing rates are shrunk with the increase of the iteration. The learn- 

ing rate of batch KM is the reciprocal of the cluster size. We do not 

change the settings of those methods. The source code of the pre- 

vious methods, namely batch KM, mini-batch KM and SGD-KM are 

public, and we use the open source code to conduct the evalua- 

tion studies. 2 The implementation of growbatch-rho is public, and 

we use the open source code to conduct the evaluation studies. 3 

6.1. Datasets 

The comparisons are conducted on four datasets: Oxford, Pitts- 

burgh, CIFAR-100, and Caltech-256. The details of those datasets 

are illustrated in Table 2 . 

• Oxford 4 : It consists of 5062 images collected from Flickr by 

searching for particular Oxford landmarks [21] . Every image is 

used to generate about 20 0 0 − 30 0 0 SIFT descriptors by run- 

ning the open source tool [22] . 5 We finally use these SIFT de- 

scriptors as the instances to perform k-means clustering. 

• Pittsbour 6 : It is a geotagged image database is formed by 254, 

064 perspective images. Those perspective images are gener- 

ated from 10, 586 Google Street View panoramas of the Pitts- 

burgh area [23] . We generate about 20 0 0–30 0 0 SIFT descriptors 

for every image by using the open source tool [22] , 7 and finally 

use these SIFT descriptors as the instances to conduct k-means 

clustering. 

• CIFAR-10 0 8 : It contains 60, 0 0 0 32 ×32 pixels images [24] . 

Each image is represented by a 3072-dimensional column vec- 

tor which is generated by using the pixels of the raw image. 

We conduct k-means clustering on those vectors. 

• Caltech-256 9 : It consists of 30, 607 images [25] . We use a 4096- 

dimensional feature to represent every image. Each feature is 

extracted by the convolution neural networks model [26] . Those 

features are used to perform k-means clustering. 

6.2. Convergence performance 

Objective loss: We conduct the comparison of the objective loss 

on four datasets. The x -axis represents CPU seconds during the 

training of the parameter. The y -axis represents the decrease of the 

objective function against a baseline. The baseline is obtained by 

running batch KM for the given time. 

As illustrated in Fig. 5 , both VRKM and VRKM ++ have advan- 

tages on decreasing the objective loss for the given time. The ad- 

vantage is more significant on large datasets, which means that 

VRKM and VRKM ++ are efficient to conduct large-scale k-means 

clustering tasks. The main reason is that both VRKM and VRKM ++ 

2 http://www.code.google.com/p/sofia-ml . 
3 https://www.github.com/idiap/eakmeans . 
4 http://www.robots.ox.ac.uk/ ∼vgg/data/oxbuildings/ . 
5 http://www.cmp.felk.cvut.cz/ ∼perdom1/hesaff/ . 
6 http://www.ok.ctrl.titech.ac.jp/ ∼torii/project/repttile/ . 
7 http://www.cmp.felk.cvut.cz/~perdom1/hesaff/. 
8 http://www.cs.toronto.edu/ ∼kriz/cifar.html . 
9 http://www.vision.caltech.edu/Image _ Datasets/Caltech256/ . 

http://www.code.google.com/p/sofia-ml
https://www.github.com/idiap/eakmeans
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.cmp.felk.cvut.cz/~perdom1/hesaff/
http://www.ok.ctrl.titech.ac.jp/~torii/project/repttile/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
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Fig. 5. The comparison of the objective loss on four large datasets. 

update the cluster centers by using variance reduced gradients, 

which is equivalent to batch KM in expectation. Benefiting from 

the lower computational cost, both VRKM and VRKM ++ complete 

more iterations than batch KM for the given time, and thus yield 

much more decrease of the objective loss than batch KM . It is not- 

ing that if we run batch KM for enough long time, it will decrease 

the objective loss equivalently or even more than our methods. 

However, this leads to much time consumption, which is not bear- 

able. For example, when we run batch KM on Pittsburgh, it takes 

more than 30 h. to decrease the objective loss like VRKM ++ in 

Fig. 5 (b). The SGD and mini-batch variants of k-means are victims 

of the stochastic noise which impedes the decrease of the objec- 

tive loss. growbatch-rho has an advantage to decrease the objective 

loss on the Oxford dataset. But, it is outperformed by our methods 

in all evaluations. 

Speedup: As illustrated in Table 3 , Time is recorded from the 

start of an algorithm, and is collected by using the unit of hour. 

In order to compare the time consumption fairly, we run all the 

algorithms until that their objective loss is decreased to a baseline. 

The baseline is not easy to be determined because that the conver- 

gence rates of all the previous methods vary a lot. Since batch KM 

is the basic variant of k-means, we use its final objective loss as 

the baseline, and try to collect the time consumption for every al- 

gorithm. However, the SGD-KM, mini-batch KM and growbatch-rho 

sometimes cannot decrease the objective loss to the baseline for 

Table 3 

The comparison of time consumption and the final objective loss on four datasets. 

Datasets Oxford/Pittsburgh 

Time (h) Speedup Loss 

Batch KM 16.11/20 1.00 × /1.00 × 6, 574, 972/3, 820, 667 

Mini-batch KM 15.56/19.31 −/ − 6, 599, 589/3, 850, 275 

SGD-KM 15.56/19.31 −/ − 6, 600, 734/3, 854, 394 

growbatch-rho 12.78/13.50 1.26 × / − 6, 572, 795/3, 830, 066 

VRKM 7.78 / 7.78 2.07 × / 2.57 × 6, 569, 367 / 3, 810, 825 

VRKM ++ 3.89 / 3.61 4.14 × / 5.54 × 6, 568, 354 / 3, 810, 825 

Datasets CIFAR-100/Caltech-256 

Time (h) Speedup Loss 

Batch KM 0.3/0.5 1.00 × /1.00 × 6, 147, 102/110, 830, 416 

Mini-batch KM 0.31/0.5 −/ − 6, 193, 337/117, 204, 216 

SGD-KM 0.31/0.5 −/ − 6, 271, 261/113, 424, 464 

growbatch-rho 0.25/0.476 −/ − 6, 161, 949/111, 715, 468 

VRKM 0.147 / 0.25 2.04 × / 2.00 × 6, 134, 762 / 110, 337, 072 

VRKM ++ 0.069 / 0.139 h 4.30 × / 3.60 × 6, 132, 739 / 110, 177, 936 

the given time. Therefore, we shut them down when we find that 

they cannot decrease the objective loss to the baseline, and collect 

their total time consumption. Speedup is computed by dividing the 

time consumption of batch KM . If an algorithm cannot decrease the 
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Fig. 6. The comparison of the convergence performance on four datasets by varying the epoch size. 

objective loss to the baseline, it has no speedup. Additionally, Loss 

is the final objective loss before those algorithms are shut down. 

We can obtain some advantages of our methods from Table 3 . 

First, we can find that both VRKM and VRKM ++ obtain significant 

speedup on the time consumption. Generally, VRKM obtains more 

than 2 × speedup, and VRKM ++ obtains more than 4 × speedup. 

The speedup becomes more significant on large datasets. As we 

have shown, the speedup of VRKM and VRKM ++ benefits from 

the variance reduced gradients when we update the cluster cen- 

ters. Second, both VRKM and VRKM ++ reduce the objective loss 

more effectively than the other methods. This observation verifies 

the advantage of VRKM and VRKM ++ again. The reason is that the 

computational cost of VRKM and VRKM ++ are comparable to the 

SGD variant of k-means. Meanwhile, SVRG reduces the stochastic 

noise effectively, and updates the parameters by using a constant 

learning rate. It is highlighted that VRKM ++ performs best on the 

decrease of the objective loss and the time consumption. The rea- 

son is that VRKM ++ does not need to compute the batch gradi- 

ent at every epoch, which decreases much computational cost of 

VRKM. 

Epoch size: We provide the comparison of the convergence per- 

formance by varying the epoch size. As illustrated in Fig. 6 , we can 

find that the settings of the epoch size have a slight impact on the 

convergence performance and the decrease of the objective loss. 

By varying the epoch size from 

1 
4 n to 2 n , the performance does 

not have much improvement, especially for large datasets. Based 

on the observation, we recommend to set the epoch size to be 

comparable to the size of the training dataset such as 0.5 n or n . 

This setting of the epoch size is good enough to converge the pa- 

rameter and decrease the objective loss. 

Learning rate: As illustrated in Fig. 7 , the comparison of the con- 

vergence performance is conducted by varying the learning rate. 

We use η0 = 

K 
n as a baseline, and vary the learning rate by mul- 

tiplying a positive integer. Here, n and K represents the number 

of instances and clusters, respectively. Generally, it shows that a 

larger learning rate improves the convergence performance. How- 

ever, when the learning rate is very large, the converge perfor- 

mance is impaired, e.g. the red line in Fig. 7 (c) and the blue and 

purple lines in Fig. 7 (d). We can observe that the learning rate can 

be set much larger than the baseline for large datasets. For exam- 

ple, when the learning rate η is larger than 100 η0 on the dataset 

Oxford, the improvement of the convergence performance is still 

significant. In fact, although the baseline, i.e. η0 = 

K 
n is conservative 

for VRKM and VRKM ++ , they still outperform the other methods 

on the convergence performance. We recommend this setting of 

the learning rate when conducting VRKM and VRKM ++ for large- 

scale clustering tasks. 

6.3. Clustering performance 

The clustering performance is compared on CIFAR-100 and 

Caltech-256. We adopt three metrics, namely: ACC, NMI, and Pu- 
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Fig. 7. The comparison of the convergence performance on four datasets by varying the learning rate. (For interpretation of the references to color in this figure, the reader 

is referred to the web version of this article.) 

rity. In experiments, we repeat every algorithm for ten times by 

using random seeds as the initial cluster centers. Note that the 

clustering results are yielded by running those algorithms for a 

given time. For every algorithm, when the time is exhausted, it will 

be terminated. Then, we begin to collect the results. As illustrated 

in Table 4 , those values out of parentheses are the mean values. 

Those values in the parentheses represent the variance. Here, the 

variance is the maximal difference between the mean and the val- 

ues yielded by all the algorithms. Note that we extract those fea- 

tures from images, but we do not conduct fine-tuning for those 

features. 

VRKM and VRKM ++ have the same clustering performance for 

the clustering tasks, and both of them have advantages over their 

counterparts. We can also find that SGD variant of k-means has 

the worst performance due to the much stochastic noise. Mini- 

batch k-means performs better than the SGD variant of k-means, 

but less than the batch k-means. The reason is that the mini-batch 

k-means updates the parameter by sampling a mini-batch of in- 

stances, which reduces part of the stochastic noise. Besides, al- 

though the batch variant of k-means uses the full gradients to up- 

date the cluster centers, it usually performs fewer iterations than 

VRKM and VRKM ++ for the given time. Therefore, its clustering 

performance is not better than our proposed methods. By contrast, 

both VRKM and VRKM ++ update their parameters by using the 

Table 4 

The comparison of clustering performance on CIFAR-100 and Caltech-256. 

Dataset CIFAR-100 

ACC NMI Purity 

Batch KM 0.2148(0.0015) 0.3701(0.0012) 0.2410(0.0 0 06) 

Mini-batch KM 0.2122(0.0026) 0.3546(0.0024) 0.2267(0.0012) 

SGD-KM 0.1968(0.0034) 0.3357(0.0032) 0.2079(0.0015) 

growbatch-rho 0.2155(0.0023) 0.3592(0.0020) 0.2303(0.0011) 

VRKM 0.2246(0.0018) 0.3742(0.0014) 0.2488(0.0 0 09) 

VRKM ++ 0.2246(0.0018) 0.3742(0.0014) 0.2488(0.0 0 09) 

Dataset Caltech-256 

ACC NMI Purity 

Batch KM 0.4736(0.0 0 09) 0.6817(0.0013) 0.5489(0.0011) 

Mini-batch KM 0.4395(0.0012) 0.6608(0.0016) 0.5091(0.0019) 

SGD-KM 0.4259(0.0017) 0.6255(0.0022) 0.4625(0.0024) 

growbatch-rho 0.4758(0.0015) 0.6750(0.0017) 0.5411(0.0017) 

VRKM 0.4969(0.0011) 0.6929(0.0016) 0.5686(0.0014) 

VRKM ++ 0.4969(0.0011) 0.6929(0.0016) 0.5686(0.0014) 

variance reduced gradients, and perform k-means more efficiently. 

In other words, they finish more iterations than the previous meth- 

ods for the given time. Thus, they outperforms the previous meth- 

ods, and obtain the best clustering performance. 
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7. Conclusion 

SVRG is effective to reduce the stochastic noise. However, it is 

challenging to be used in k-means due to the drift of the cluster 

centers. In the paper, we propose a position correction mechanism 

to solve such challenging problem, and use a constant learning 

rate to update the parameter in k-means. Furthermore, we present 

two variants of variance reduced k-means: VRKM and VRKM ++ . 

VRKM ++ does not have to compute the batch gradient at every 

epoch, thus decreasing much computational cost than VRKM. 

Extensive empirical studies show that both VRKM and VRKM ++ 

are efficient to conduct large-scale k-means clustering tasks, and 

outperform the state-of-the-art method significantly. 
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