
Neurocomputing 307 (2018) 184–194

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Large-scale k-means clustering via variance reduction

Yawei Zhao

a , ∗, Yuewei Ming

a , Xinwang Liu

a , En Zhu

a , Kaikai Zhao

b , Jianping Yin

c

a National University of Defense Technology, Changsha, Hunan, China
b Naval Aeronautical University, Yantai, Shandong, China
c Dongguan University of Technology, Dongguan, Guangdong, China

a r t i c l e i n f o

Article history:

Received 8 November 2017

Revised 20 January 2018

Accepted 29 March 2018

Available online 7 May 2018

Communicated by Sato-Ilic Mika.

Keywords:

k-Means clustering

Large-scale clustering

Variance reduction

a b s t r a c t

With the increase of the volume of data such as images in web, it is challenging to perform k-means

clustering on millions or even billions of images efficiently. One of the reasons is that k-means requires

to use a batch of training data to update cluster centers at every iteration, which is time-consuming.

Conventionally, k-means is accelerated by using one or a mini-batch of instances to update the centers,

which leads to a bad performance due to the stochastic noise. In the paper, we decrease such stochastic

noise, and accelerate k-means by using variance reduction technique. Specifically, we propose a position

correction mechanism to correct the drift of the cluster centers, and propose a variance reduced k-means

named VRKM. Furthermore, we optimize VRKM by reducing its computational cost, and propose a new

variant of the variance reduced k-means named VRKM ++ . Comparing with VRKM, VRKM ++ does not

have to compute the batch gradient, and is more efficient. Extensive empirical studies show that our

methods VRKM and VRKM ++ outperform the state-of-the-art method, and obtain about 2 × and 4 ×
speedups for large-scale clustering, respectively. The source code is available at https://www.github.com/

YaweiZhao/VRKM _ sofia-ml .

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

K-means clustering has been intensively studied and widely ap-

plied into various applications, such as image segmentation [1] ,

outlier detection [2] , sense discovery [3] , to name just a few. With

a group of initialized cluster centers, k-means algorithm alterna-

tively performs instance partition and the update of cluster centers

until convergence [4] . As seen, it needs to pass over a batch of in-

stances in order to update cluster centers at each iteration, which

is computationally intensive. It prevents traditional k-means algo-

rithms from being applied into large scale applications.

To enable the ability of k-means in dealing with large-scale

applications, the pioneering work in [5] proposes a stochastic

gradient descent (SGD) variant of k-means in which one instance

is randomly sampled to update a cluster center at each iteration.

Compared with the traditional batch k-means, this variant avoids

scanning all samples when updating the cluster centers, and

significantly improves the computational efficiency of k-means.

However, by randomly sampling, this variant usually brings in

stochastic noise or variance. 1 Such stochastic noise impairs the

convergence of the objective function, which adversely affects the

∗ Corresponding author.

E-mail address: zhaoyawei@nudt.edu.cn (Y. Zhao).
1 The stochastic noise and variance have equivalent meanings in the paper.

clustering performance. Recently, a mini-batch variant of k-means

is proposed in [6] to alleviate this issue. Instead of sampling

one instance at each iteration, it performs the update of cluster

centers by randomly sampling a mini-batch instances. As seen,

the mini-batch variant of k-means is able to effectively decrease

the stochastic noise while increasing the computational cost in

calculating the gradient. Some more recently work on SGD such

as variance reduction technique (SVRG) [7] has been developed to

decrease the stochastic noise. In SVRG, the parameters are updated

via the variance reduced gradient whose expectation equals to the

batch gradient. By this manner, SVRG is able to effectively reduce

the stochastic noise at the comparable computational cost of

SGD, and usually demonstrates promising performance in various

applications.

One can apply SVRG into k-means to extend its scalability. How-

ever, we observe that the objective function of k-means is sharply

divergent at iterations when applying the SVRG directly. The rea-

son is that the optimization objective of k-means is jointly dom-

inated by the parameter (cluster centers) and instance partitions

(clusters). In specific, the cost function and the expectation of its

gradient corresponding to each cluster are changed with the varia-

tion of instance partitions. Directly applying SVRG to k-means will

first search an optimal direction in expectation based on the cur-

rent partition. After that, the objective function is decreased along

the direction. However, when the instance partition changes, this

https://doi.org/10.1016/j.neucom.2018.03.059

0925-2312/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.neucom.2018.03.059
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.03.059&domain=pdf
https://www.github.com/YaweiZhao/VRKM_sofia-ml
mailto:zhaoyawei@nudt.edu.cn
https://doi.org/10.1016/j.neucom.2018.03.059

Y. Zhao et al. / Neurocomputing 307 (2018) 184–194 185

Fig. 1. The optimum of the cluster center drifts from the white circle to the red circle. In our method, the current cluster center is corrected by using the gradients

corresponding to the newly-joined instances. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

direction may not be optimal or even not be a decreased one. It is

called the drift of the cluster centers. As illustrated in Fig. 1 , the

optimal cluster center drifts when some instances join in the clus-

ter at the iteration. The direction based on the previous instance

partition makes the cluster center far from the current optimum.

Although it is indeed the optimal direction corresponding to the

previous instance partition, it leads to the increase of the objec-

tive function for the current instance partition. According to the

above discussion, we argue that it is not trivial to apply SVRG into

k-means.

To make SVRG applicable in k-means, we develop a simple

while effective mechanism to solve the drift of the optimal pa-

rameters in this paper. The basic idea is to correct the position

of the cluster centers when the corresponding instance partitions

are changed. In specific, the cluster centers are corrected by us-

ing the gradients corresponding to those newly-joined or newly-

left instances at every iteration. This idea can be illustrated from

Fig. 1 . The cluster center is corrected by using the gradients corre-

sponding to the newly-joined instances. The proposed mechanism

enables the resultant algorithms to adopt a constant learning rate

to update the parameters, which guarantees its efficient conver-

gence. After that, we instantiate two specific algorithms, termed

as VRKM and VRKM ++ , where VRKM samples an instance ran-

domly and updates a cluster center by using a variance reduced

gradient at every iteration. VRKM ++ is more efficient than VRKM

because it decreases much computational cost of the variance re-

duced gradient. Comprehensive experiments have been conducted

on four large-scale datasets. As shown, our algorithms demonstrate

significant improvements on the efficiency and clustering perfor-

mance. Especially, VRKM ++ achieves more than 4 × speedup on

the datasets Oxford and Pittsburgh which contain 12, 534, 635 and

7, 979, 479 instances, respectively.

The organization of the paper has been presented as follows.

Section 2 summaries the related work. Section 3 presents the pre-

liminaries. Section 4 presents the design of the variance reduced

k-means. Section 5 presents the optimization of the variance re-

duced k-means. Section 6 presents the extensive empirical studies.

Section 7 concludes the paper.

2. Related work

Lloyd proposes the batch k-means [8] . Since the classic k-means

algorithm is slow for large datasets, Bottou and Bengio have pro-

posed a SGD variant of k-means which updates the cluster centers

by sampling an instance randomly at every iteration [5] . The SGD

variant of k-means is efficient to be performed, but its solution is

a victim of the stochastic noise. We present the reason from an

optimization view. Generally, an optimization problem is usually

formulated as

min
ω

f (ω) =

1

n

n ∑

i =1

f i (ω) , (1)

where f (ω) is usually denoted by an objective function, training

loss, loss function or cost function etc equivalently. It is a finite-

sum optimization objective consisting of n functions, namely f i (ω)

with i ∈ { 1 , 2 , . . . , n } . n is the number of instances in the training

dataset, and ω is the parameter we need to train. The batch gradi-

ent descent is to update ω by using a batch gradient: ∇f , that is:

ω t+1 = ω t −η∇ f (ω t) = ω t −η

(

1

n

n ∑

i =1

∇ f i (ω t)

)

. (2)

Here, t represents the t th iteration. η represents a learning rate.

When n is extremely large, the computational cost of the batch

gradient is very high. Instead of scanning the entire training

dataset to obtain a batch gradient, SGD updates ω by sampling an

instance, e.g. x i t with i t ∈ { 1 , 2 , . . . , n } randomly. Here, i t represents

the index of the picked instance at the t th iteration. Thus, we up-

date the parameter as:

ω t+1 = ω t − η∇ f i t (ω t) . (3)

SGD is efficient to reduce the objective function because of

E ∇ f i t (ω t) = E

(

1

n

n ∑

i =1

∇ f i (ω t)

)

= ∇ f (ω t) , (4)

where E represents the expectation operator with respect to i t .

However, the stochastic gradient ∇ f i t (ω t) is usually not equivalent

to the batch gradient ∇f (ω t), which is denoted by the variance or

stochastic noise. Therefore, SGD usually leads to a low-quality so-

lution due to the stochastic noise. Generally, a decaying learning

rate, e.g. η =

1
t η0 , is used to reduce the noise where η0 is a con-

stant. However, it impairs the convergence rate of SGD with the

increase of the iterations. Sculley proposes a mini-batch variant of

k-means, which reduces the stochastic noise effectively [6] , but is

still a victim of the stochastic noise.

K-means is performed at two phases alternatively. The first

phase needs to compute the nearest cluster center for every in-

stance. The second phase needs to update the cluster center. There

are some excellent work focusing on accelerating k-means at the

first phrase [9,10] . For example, the triangle inequality and dis-

tance bounds are usually used to reduce the computational cost at

the first phase [9,10] . Additionally, some other impressive studies

present exciting results on accelerating k-means. For instance, the

binary code learning is used to decrease the memory consump-

tion, and thus the cost of the distance computation is decreased

significantly by using Hamming metric [11] . Those great researches

are orthogonal to our methods, and can be embedded into our

methods to yield more efficiency development. In the paper, we

focus on accelerating k-means via variance reduced gradients at

the second phase. To the best of our knowledge, this paper is the

first work to improve k-means by using the variance reduction

technique.

The variance reduction technique has been widely used in

variants of SGD to improve the convergence performance [12] . It

is effective to reduce the stochastic noise caused by the stochastic

gradient at every iteration. Since their computational cost is com-

parable to SGD, they can be performed efficiently. Those variants

186 Y. Zhao et al. / Neurocomputing 307 (2018) 184–194

Table 1

The illustration of symbols and their notations.

Symbols Notations

X ∈ R n ×d The data matrix

X c The instances whose cluster has a center c

x ∈ R 1 ×d An instance denoted by a d ×1 column vector

C ∈ R d×K The matrix of cluster centers

c ∈ R d×1 A cluster center

c ∗ The optimal cluster center

K The number of clusters

v [c] The number of instances in the cluster c

∇ The gradient operator

∇ f i t The stochastic gradient at the t th iteration

∇ ̃

 f i t The noise reducer at the t th iteration

∇ ̃

 f The batch gradient

E The expectation operator

γ The variance reduced gradient

T The epoch size

η The learning rate

i t The random number at the i th iteration

‖ · ‖ The l 2 norm of a vector defaultly

Fig. 2. The illustration of the basic data structure and operations where the cluster

center c k is nearest to x i .

of SGD include SVRG [7] , SAGA [13] , SAG [14] , S2GD [15] , EMGD

[16] , SVRG++ [17] , AdaSVRG [18] etc. In the paper, we pick a popu-

lar variant: SVRG to improve k-means due to its simpleness. Other

advanced variance reduction techniques may be used to further

the acceleration of k-means, which is left as the future work.

3. Preliminaries

In this section, the symbols and their notations are presented

in Table 1 . The basic data structure and definitions are then pre-

sented. After that, we present k-means from the optimization view.

Finally, we present the variance reduction technique used in SVRG.

3.1. Data structure and basic definitions

As illustrated in Fig. 2 , the training dataset X is a d ×n matrix,

where n represents the number of instances, and d is the dimen-

sion of an instance. The set of instances which belongs to a cluster

c is denoted by X c . x i with i ∈ { 1 , 2 , . . . , n } represents an instance,
which is a d -dimensional column vector. c is a d -dimensional col-

umn vector, which represents the center of X c . ∇f (c) represents the

batch gradient with respect to c . ∇f i (c) represents the stochastic

gradient corresponding to the instance x i . K is the number of clus-

ters. We use a d ×K matrix C to represent all the K centers such

that C = [c 1 , c 2 , . . . , c K] .

Define 1 (Cluster membership for an instance). Given a cluster cen-

ter set C = [c 1 , . . . , c K] , the nearest cluster center of an instance x

is denoted by x { C} ∈ R

d×1 which is one of the K centers. The index

of the center is denoted by I x { C} which is an integer ranging from

1 to K .

Define 2 (Gradient with respect to x { C }). Given a cluster center set

C = [c 1 , . . . , c K] and an instance x . The gradient with respect to x { C }

is denoted by ∇ x (C) ∈ R

d×K . The I x { C} th column of ∇ x (C) is x { C} −
x, and the other columns are zeros.

x { C } represents the nearest center of x . ∇ x (C) represents the

gradient with respect to x { C }. As shown in Fig. 2 , if x i belongs to

the cluster c k , ∇ x (C) is obtained by using the k th column of C to

subtract x and setting other columns to be 0. There may be a little

confusion between C and ω in the paper. When we discuss a gen-

eral optimization problem, its parameter is denoted by ω. When

we focus on the optimization objective function of k-means, its pa-

rameter is denoted by C .

3.2. Optimization view of k-means

The objective function of k-means clustering is:

min
C= { c 1 ,c 2 , ... ,c K }

1

2

K ∑

i =1

∑

x ∈ X c i

‖ c i − x ‖

2
2 . (5)

Here, K is the number of the clusters, and c i is the nearest clus-

ter center of x . Both the SGD and mini-batch variants of k-means

can be thought as optimization methods to solve (5) [4] . As illus-

trated in Algorithm 1 , when m = 1 holds, Algorithm 1 is the SGD

Algorithm 1 The previous variant of k-means.

Require: The number of clusters K. The dataset X .

1: Initialize every cluster center c with c ∈ C by picking an in-

stance x from X randomly;

2: The cluster size v [c] with c ∈ C is initialized by 0 .

3: for i = 1 to t do

4: m instances are picked from X randomly, and stored in M;

5: for x ∈ M do

6: Find the nearest cluster center of x , i.e. x { C} ;
7: for x ∈ M do

8: c = x { C} ;
9: v [c] = v [c] + 1 ;

10: η =

1
v [c] ; ♦ Decaying learning rate.

11: c = c −η(c − x) ; ♦ Update rule is like that of SGD.
return c;

variant of k-means. When m > 1 and m < n hold, Algorithm 1 is the

mini-batch k-means [6] . Additionally, Line 10 shows that a decay-

ing learning rate is used. The update rule in Line 11 is performed

like SGD, where c − x is the stochastic gradient corresponding to x .

The learning rate η is decayed with the increase of the iterations

to reduce the stochastic noise. Considering a large number of the

iterations, it is difficult to make a further progress when η is ex-

tremely small. Since the stochastic gradient does not equal to the

batch gradient, both the SGD and mini-batch k-means are the vic-

tims of the stochastic noise, thus leading to low-quality solutions.

3.3. SVRG: SGD with the variance reduction technique

As illustrated in (1) and (3) , a general optimization problem can

be solved by using SGD. The stochastic gradient in SGD does not

usually equal to the batch gradient, which leads to the stochastic

noise. SVRG is effective to reduce the stochastic noise. The key idea

is to use a variance reduced gradient to update the parameter. The

variance reduced gradient is

γ = ∇ f i t −∇ ̃

 f i t + ∇ ̃

 f , (6)

where i t with i t ∈ { 1 , 2 , . . . , n } is picked randomly. ∇ f i t is a

stochastic gradient, ∇ ̃

 f i t is a noise reducer, and ∇ ̃

 f is a snapshot

of the batch gradient. SVRG keeps a good property by designing

∇ ̃

 f i t and ∇ ̃

 f appropriately, that is:

lim

t→∞

E γ = lim

t→∞

(
E (∇ f i t − ∇ ̃

 f i t + ∇ ̃

 f)
)

= 0 , (7)

where ∇f is the batch gradient with respect to the current param-

eter. That is, γ is converged to 0 with the increase of the iterations.

Y. Zhao et al. / Neurocomputing 307 (2018) 184–194 187

Fig. 3. Variance Reduced K-Means (VRKM) is divergent on the dataset: CIFAR-100

if SVRG is used trivially.

4. Variance reduced k-means clustering

In this section, we provide a method to solve the position drift

problem, and propose a variance reduced k-means named VRKM.

4.1. Position correction

Although SVRG is effective to decrease the stochastic noise, it

is challenging to combine it with k-means. As illustrated in Fig. 3 ,

if SVRG is used in k-means directly, the objective function is in-

creased, and thus leads to be divergent. The specific meanings of

symbols and the metric in Fig. 3 are illustrated in the empirical

studies.

The reason is that a cluster may be changed between iterations,

and the instances within a cluster are not fixed. During the itera-

tions, some new instances may be added into the cluster, and some

instances may be removed from the cluster. The batch gradient is

jointly dominated by the cluster center and the partition. It is dif-

ferent from (1) because that the component functions in (1) are

fixed. The batch gradient in (1) is completely dominated by its pa-

rameter ω. This difference leads to the drift of the optimal param-

eter. As illustrated in Fig. 1 , the cluster center is updated between

iterations. It is easy to see that some new instances are added

into the cluster center after an iteration. The cluster center thus

becomes far from the optimum after the drift of the position. If

the cluster is updated, the drift of the cluster center always exists,

which makes it impossible to update the center until convergence.

We conduct position correction for every cluster center. The

position correction is shown in Fig. 1 . When the cluster center

˜ c drifts, it is corrected by the gradients corresponding to those

newly-joined or newly-left instances. First, when some instances

are added into the cluster X ˜ c , ˜ c is corrected to be close to those

newly-joint instances. If some instances are removed from X ˜ c , ˜ c

is corrected to be far from those newly-left instances. Second, the

gradients corresponding to other instances are used to avoid ag-

gressive correction. In other words, all the gradients corresponding

to the instances are involved to correct the position of ˜ c . The posi-

tion correction guarantees that the cluster center ˜ c is close to the

optimum, even though it drifts due to the change of the instance

partition. As illustrated in Algorithm 2 , the current center ˜ c is cor-

rected by using all the gradients corresponding to the instances in

the cluster X ˜ c .

We then update the cluster centers by using the variance re-

duced gradient iteratively. The variance reduced k-means denoted

Algorithm 2 Position correction for the cluster center ˜ c .

Require: The cluster X ˜ c and its size v .
1: ∇ ̃

 f (̃ c) =

1
v

∑

x ∈ X ˜ c
(̃ c − x) ; ♦ Batch gradient for ˜ c .

2: ˜ c new ← ˜ c − ∇ ̃

 f (̃ c) ; ♦ ˜ c is corrected.

3: return ˜ c ;

by VRKM has been illustrated in Algorithm 3 . The outer loop (Lines

Algorithm 3 VRKM: variance reduced k-means.

Require: The number of clusters K. The dataset X . The constant

learning rate η. The epoch size T .
1: Initialize every c ∈

˜ C with an instance picked from X randomly;

2: repeat

3: Update the nearest cluster center for every instance x i with

i ∈ { 1 , 2 , . . . , n } according to ˜ C , and thus obtain the instance

partitions { X c 1 ,…, X c K } ;
4: Conduct position correction for a cluster center c i with 1 ≤

i ≤ K, and obtain ˜ c new

i
according to Algorithm 2

5: C 0 =

˜ C new = { ̃ c new

1
, . . . , ̃ c new

K
} , and let X ˜ c new

i
= X c i for 1 ≤ i ≤

K;

6: Obtain x i { ̃ C new } , I x i { ̃ C new } and ∇ x i (̃
 C new) for every instance x i

with 1 ≤ i ≤ n based on the instance partition { X ˜ c new
1

, . . . , X ˜ c new
K

} ;
7: ∇ ̃

 f (̃ c new

i
) =

1
v i

∑

x ∈ X ˜ c new
i

(̃ c new

i
− x) for 1 ≤ i ≤ K;

8: ∇ ̃

 f (̃ C new) = {∇ ̃

 f (̃ c new

1
) , ∇ ̃

 f (̃ c new

2
) , . . . , ∇ ̃

 f (̃ c new

K
) } ;

9: for t = 0 , 1 , . . . , T − 1 do

10: Pick an index i t from { 1 , 2 , . . . , n } randomly;

11: Find the nearest cluster center from C t for x i t , and thus

obtain x i t { C t } , I x i t { C t } and ∇ x i t
(C t) ;

12: if x i t { C t }
 = x i t { ̃ C new } or I x i t { C t }
 = I x i t { ̃ C new }
then

13: γt = ∇ x i t
(C t) − ∇ x i t

(̃ C new) + ∇ ̃

 f (̃ C new) ;

14: C t+1 = C t − ηγt ;

15: else C t+1 = C t ;

16: ˜ C = C T ;

17: until convergence;

18: return

˜ C ;

2–17) represents that VRKM is organized by epochs. Line 3 re-

quires to scan the entire dataset in order to obtain the nearest

cluster center for every instance. Meanwhile, the number of in-

stances within a cluster has been obtained. Line 4 is the position

correction which solves the position drift of the optimal cluster

center according to Algorithm 2 . The inner for loop (Lines 9–16)

means to update the cluster centers by using the variance reduced

gradient γ t . In specific, Line 13 represents the variance reduced

gradient. Line 14 shows that the constant learning rate is used to

update the parameter.

It is worth noting that ∇ x i t
(C t) is obtained based on X C t which

may be updated at every iteration. But, ∇ x i t
(̃ C new) and ∇ ̃

 f (̃ C new)

are obtained based on the X ˜ C new which is constant during itera-

tions in an epoch. Thus, although C 0 =

˜ C new at t = 0 , the stochastic

gradients ∇ x i t
(C t) and ∇ x i t

(̃ C new) are different if x i t belongs to a

different cluster against the partition X ˜ C new .

Compared with previous k-means, i.e. Algorithm 1 , VRKM is or-

ganized as epochs, and the cluster centers are updated iteratively

during an epoch. The variance reduced gradient, i.e. γ t is equiv-

alent to the batch gradient in expectation. Thus, the stochastic

noise has been decreased effectively. When we pick an instance x i t
randomly, the stochastic gradient ∇ x i t

(C t) and the noise reducer

∇ x i t
(̃ C) are computed at every iteration. The computational cost

188 Y. Zhao et al. / Neurocomputing 307 (2018) 184–194

is comparable to the SGD variant of k-means. VRKM can be per-

formed more efficiently. According to Algorithm 2 , the position cor-

rection needs to compute a stochastic gradient for every instance.

If those stochastic gradients are saved in memory, the noise re-

ducer ∇ x i t
(̃ C) does not need to be computed during iteratively up-

date of the parameter. Thus, the computational cost every iteration

is decreased at the cost of memory significantly.

4.2. The constant learning rate

Benefiting from the position correction mechanism, the vari-

ance reduced k-means is accelerated by using a constant learning

rate. The variance reduced gradient equals to the batch gradient in

expectation according to (7) . As with the increase of iterations, the

cluster center c t at the current iteration is close to the optimum

denoted by c ∗ . Since

η lim

t→∞

E γt

= lim

t→∞

E C t+1 − lim

t→∞

E C t

= C ∗ −C ∗ = 0 .

That is to say, lim

t→∞

(E γt) = 0 holds when the learning rate η is a

constant [7] . Benefiting from this property, the variance reduced k-

means can be accelerated by using a constant learning rate, which

has a significant advantage over the pervious methods. No matter

the SGD variant of k-means or the mini-batch k-means, a decaying

learning rate is used to decrease the stochastic noise. The decaying

learning rate makes k-means converge very slowly after a number

of iterations. It is difficult to make a further progress with the in-

crease of the iteration. This weakness of the previous methods has

been overcome by using a constant learning rate in the variance

reduced k-means. Numerical results have verified the advantage of

the constant learning rate, which is efficient to converge the objec-

tive function of k-means.

5. Algorithm optimization

In this section, a new variant of the variance reduced k-means

named VRKM ++ is proposed, which decreases much computa-

tional cost of VRKM.

5.1. VRKM ++ : VRKM without batch gradients

VRKM has to compute the batch gradient twice in an epoch.

The first batch gradient is computed for correcting the position of

the cluster center (see Line 8 in Algorithm 3), and the second is

used in the variance reduced gradient (see Line 13 in Algorithm 3).

If the batch gradient is stored in memory, the batch gradient needs

to be computed only once, but it consumes much memory for a

large dataset. Generally, for a large dataset, both batch gradients

need to be computed by scanning every instance of the cluster,

which increases the computational cost. The computation of the

batch gradient needs to scan the entire dataset, which is time-

consuming. VRKM ++ is proposed to optimize VRKM, which does

not lead to the computational cost of the batch gradient.

VRKM ++ decreases the computational cost by the following

observation:

˜ c new ←

˜ c − ∇ ̃

 f (̃ c) =

˜ c −
(

˜ c − 1

v k

∑

x ∈ X c
x

)

=

1

v k

∑

x ∈ X ˜ c
x = X̄ ˜ c , (8)

where ˜ c is corrected via the position correction. That is, the current

cluster center is corrected by the average of the instances in this

cluster. In fact, we can conduct the position correction by scan-

ning the cluster only once, and we do not have to compute the

batch gradient ∇ ̃

 f (̃ c) . First, we obtain the new center ˜ c with ˜ c = X̄ ˜ c

by scanning the cluster according to (8) . Second, we compute the

batch gradient immediately, that is,

∇ ̃

 f (̃ c new

i
) =

˜ c new

i
− 1

v i

∑

x ∈ X new
˜ c i

x = 0 . (9)

Based on this observation, the batch gradient, namely ∇ ̃

 f (̃ C new)

does not have to be computed, thus decreasing much computa-

tional cost of VRKM. As illustrated in Algorithm 4 , line 4 represents

Algorithm 4 VRKM ++ : variance reduced k-means without batch

gradients.

Require: The number of clusters K. The dataset X . The constant

learning rate η. The epoch size T .
1: Initialize each c ∈

˜ C with instances picked from X randomly;

2: repeat

3: Update the nearest cluster center for every instance x i with

i ∈ { 1 , 2 , . . . , n } according to ˜ C , and thus obtain the instance

partitions { X c 1 ,…, X c K } ;
4: C 0 =

˜ C new =

(
X̄ 1 , X̄ 2 , . . . , X̄ K

)
, and let X ˜ c new

i
= X c i for 1 ≤ i ≤ K;

♦ Position correction.

5: Obtain x i { ̃ C new } , I x i { ̃ C new } and ∇ x i (̃
 C new) for every instance x i

with 1 ≤ i ≤ n based on the instance partition { X ˜ c new
1

, . . . , X ˜ c new
K

} ;
6: for t = 0 , 1 , . . . , T − 1 do

7: Pick an index i t from { 1 , 2 , . . . , n } randomly;

8: Find the nearest cluster center from C t for x i t , and thus

obtain x i t { C t } , I x i t { C t } and ∇ x i t
(C t) ;

9: if x i t { C t }
 = x i t { ̃ C new } or I x i t { C t }
 = I x i t { ̃ C new }
then

10: γt = ∇ x i t
(C t) − ∇ x i t

(̃ C new) ;

11: C t+1 = C t − ηγt ;

12: else C t+1 = C t ;

13: ˜ C = C T ;

14: until convergence;

15: return

˜ C ;

the position correction where all the cluster centers are corrected

by the average of the instances within a cluster. Line 10 means

that the variance reduced gradient does not need the computation

of the batch gradient. Benefiting from the optimization, VRKM ++

is performed more efficient than VRKM.

Note that Line 4 in Algorithm 4 is the average of the instance

within a cluster. As we know, the classic k-mean also uses the aver-

age of instance to update the cluster centers for the next iteration.

However, the average strategy in VRKM ++ has the different goal

from the classic k-means. The average strategy is used to obtain

the initial cluster centers, i.e. ˜ C new . The new initial cluster centers

are yielded to update the cluster centers via the variance reduced

gradients, and will be discarded at the end of the iteration. The

new-learned cluster center C T will be used to update the cluster

membership of instances at the next iteration, which is different

from the classic k-means.

To make it clear, we illustrate our variance reduced k-means ac-

cording to Fig. 4 . As shown in the top-left subfigure, the instances

are partitioned into two clusters. x belongs to the blue cluster and

its nearest cluster center is c 2 , that is, x { ̃ C } = c 2 . After the posi-

tion correction, x ’s nearest cluster center is c 1 , namely x { C 0 } = c 1 .

Thus, the cluster centers are updated via the variance reduced gra-

dients. As shown in the top-right subfigure, ∇ x (C 0) = c 1 − x and

∇ x (̃ C) = c 2 − x hold. Then, c 1 and c 2 are updated in the bottom-left

subfigure. Finally, the instances are partitioned into new clusters as

illustrated in the bottom-right subfigure.

Y. Zhao et al. / Neurocomputing 307 (2018) 184–194 189

Fig. 4. Cluster centers are updated via variance reduced gradients.

5.2. Parameter settings

Both VRKM and VRKM ++ are organized as epochs and the en-

tire dataset needs to be scanned to update the cluster in an epoch,

which is time-consuming. A large epoch size T helps to make the

objective function converge efficiently. The epoch size T is usually

set to be comparable to the size of the training data, e.g. 0.25 n, n ,

or 2 n . Alternatively, the epoch size T can be set by using a heuristic

method. For example, T can be increased exponentially e.g. T = 2 s

where s represents the s th epoch.

The learning rate η is a constant, and needs to be set before

the start of VRKM. It plays an important role in the performance of

our methods. A relatively large η helps to improve the convergence

performance of VRKM. However, VRKM will be divergent when η
is extremely large. Empirically, the constant learning rate can be

set as η =

K
n . Here, K is the number of clusters, and n is the num-

ber of instances. Note that this setting of the learning rate is con-

servative. It can be set larger than K
n for a large dataset to obtain

the improvement of the convergence performance. Empirical stud-

ies show that VRKM and VRKM ++ can be performed efficiently by

using the heuristic method, and outperform their counterparts sig-

nificantly.

Additionally, there are some impressive researches investigating

the settings of those hyper-parameters when using the variance

reduction techniques [19,20] . Although we do not use those ad-

vanced methods in VRKM and VRKM ++ , it is not difficult to use

those methods to set the hyper-parameters including the epoch

size and the learning rate. For example, the epoch size is set

heuristically in [19] . An adaptive method to set an optimal learn-

ing rate is proposed in [20] . The researches can be used to improve

VRKM and VRKM ++ , and we recommend readers to read the pa-

pers for more details.

6. Empirical studies

In this section, we conduct extensive empirical studies on a

Red Hat Enterprise 64-bit Linux workstation with 12-core Intel

Xeon Westmere EP CPU 2.93 GHz and 48 GB memory. Both VRKM

and VRKM ++ are compared with the batch k-means denoted by

batch KM [8] , the SGD k-means denoted by SGD-KM [5] , the mini-

batch k-means denoted by mini-batch KM [6] , and the state-of-the-

art algorithm denoted by growbatch-rho [9] . As far as we know,

growbatch-rho is the newest variant of k-means which is related

to our methods.

K-means is very sensitive to the initial conditions. The initial

seeds of k-means usually have significant impacts on the clustering

result. Before conducting the experiments, we pick the initial seeds

randomly. After that, the seeds are fixed, and we use them to con-

duct clustering for all algorithms. It is essential to remove the im-

pact of the randomness due to the seeds, and to conduct the com-

parison for all algorithms fairly. Additionally, as we have illustrated

Table 2

Statistics of four large-scale datasets.

Datasets #Instances #Dimension #clusters

Oxford 12, 534, 635 128 10 0 0

Pittsbour 7, 979, 479 128 20 0 0

CIFAR-100 60, 0 0 0 3072 100

Caltech-256 30, 607 4096 257

in Section 3.2 , the previous methods including mini-batch KM and

SGD-KM use the decaying learning rate. In other words, their learn-

ing rates are shrunk with the increase of the iteration. The learn-

ing rate of batch KM is the reciprocal of the cluster size. We do not

change the settings of those methods. The source code of the pre-

vious methods, namely batch KM, mini-batch KM and SGD-KM are

public, and we use the open source code to conduct the evalua-

tion studies. 2 The implementation of growbatch-rho is public, and

we use the open source code to conduct the evaluation studies. 3

6.1. Datasets

The comparisons are conducted on four datasets: Oxford, Pitts-

burgh, CIFAR-100, and Caltech-256. The details of those datasets

are illustrated in Table 2 .

• Oxford 4 : It consists of 5062 images collected from Flickr by

searching for particular Oxford landmarks [21] . Every image is

used to generate about 20 0 0 − 30 0 0 SIFT descriptors by run-

ning the open source tool [22] . 5 We finally use these SIFT de-

scriptors as the instances to perform k-means clustering.

• Pittsbour 6 : It is a geotagged image database is formed by 254,

064 perspective images. Those perspective images are gener-

ated from 10, 586 Google Street View panoramas of the Pitts-

burgh area [23] . We generate about 20 0 0–30 0 0 SIFT descriptors

for every image by using the open source tool [22] , 7 and finally

use these SIFT descriptors as the instances to conduct k-means

clustering.

• CIFAR-10 0 8 : It contains 60, 0 0 0 32 ×32 pixels images [24] .

Each image is represented by a 3072-dimensional column vec-

tor which is generated by using the pixels of the raw image.

We conduct k-means clustering on those vectors.

• Caltech-256 9 : It consists of 30, 607 images [25] . We use a 4096-

dimensional feature to represent every image. Each feature is

extracted by the convolution neural networks model [26] . Those

features are used to perform k-means clustering.

6.2. Convergence performance

Objective loss: We conduct the comparison of the objective loss

on four datasets. The x -axis represents CPU seconds during the

training of the parameter. The y -axis represents the decrease of the

objective function against a baseline. The baseline is obtained by

running batch KM for the given time.

As illustrated in Fig. 5 , both VRKM and VRKM ++ have advan-

tages on decreasing the objective loss for the given time. The ad-

vantage is more significant on large datasets, which means that

VRKM and VRKM ++ are efficient to conduct large-scale k-means

clustering tasks. The main reason is that both VRKM and VRKM ++

2 http://www.code.google.com/p/sofia-ml .
3 https://www.github.com/idiap/eakmeans .
4 http://www.robots.ox.ac.uk/ ∼vgg/data/oxbuildings/ .
5 http://www.cmp.felk.cvut.cz/ ∼perdom1/hesaff/ .
6 http://www.ok.ctrl.titech.ac.jp/ ∼torii/project/repttile/ .
7 http://www.cmp.felk.cvut.cz/~perdom1/hesaff/.
8 http://www.cs.toronto.edu/ ∼kriz/cifar.html .
9 http://www.vision.caltech.edu/Image _ Datasets/Caltech256/ .

http://www.code.google.com/p/sofia-ml
https://www.github.com/idiap/eakmeans
http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/
http://www.cmp.felk.cvut.cz/~perdom1/hesaff/
http://www.ok.ctrl.titech.ac.jp/~torii/project/repttile/
http://www.cs.toronto.edu/~kriz/cifar.html
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

190 Y. Zhao et al. / Neurocomputing 307 (2018) 184–194

Fig. 5. The comparison of the objective loss on four large datasets.

update the cluster centers by using variance reduced gradients,

which is equivalent to batch KM in expectation. Benefiting from

the lower computational cost, both VRKM and VRKM ++ complete

more iterations than batch KM for the given time, and thus yield

much more decrease of the objective loss than batch KM . It is not-

ing that if we run batch KM for enough long time, it will decrease

the objective loss equivalently or even more than our methods.

However, this leads to much time consumption, which is not bear-

able. For example, when we run batch KM on Pittsburgh, it takes

more than 30 h. to decrease the objective loss like VRKM ++ in

Fig. 5 (b). The SGD and mini-batch variants of k-means are victims

of the stochastic noise which impedes the decrease of the objec-

tive loss. growbatch-rho has an advantage to decrease the objective

loss on the Oxford dataset. But, it is outperformed by our methods

in all evaluations.

Speedup: As illustrated in Table 3 , Time is recorded from the

start of an algorithm, and is collected by using the unit of hour.

In order to compare the time consumption fairly, we run all the

algorithms until that their objective loss is decreased to a baseline.

The baseline is not easy to be determined because that the conver-

gence rates of all the previous methods vary a lot. Since batch KM

is the basic variant of k-means, we use its final objective loss as

the baseline, and try to collect the time consumption for every al-

gorithm. However, the SGD-KM, mini-batch KM and growbatch-rho

sometimes cannot decrease the objective loss to the baseline for

Table 3

The comparison of time consumption and the final objective loss on four datasets.

Datasets Oxford/Pittsburgh

Time (h) Speedup Loss

Batch KM 16.11/20 1.00 × /1.00 × 6, 574, 972/3, 820, 667

Mini-batch KM 15.56/19.31 −/ − 6, 599, 589/3, 850, 275

SGD-KM 15.56/19.31 −/ − 6, 600, 734/3, 854, 394

growbatch-rho 12.78/13.50 1.26 × / − 6, 572, 795/3, 830, 066

VRKM 7.78 / 7.78 2.07 × / 2.57 × 6, 569, 367 / 3, 810, 825

VRKM ++ 3.89 / 3.61 4.14 × / 5.54 × 6, 568, 354 / 3, 810, 825

Datasets CIFAR-100/Caltech-256

Time (h) Speedup Loss

Batch KM 0.3/0.5 1.00 × /1.00 × 6, 147, 102/110, 830, 416

Mini-batch KM 0.31/0.5 −/ − 6, 193, 337/117, 204, 216

SGD-KM 0.31/0.5 −/ − 6, 271, 261/113, 424, 464

growbatch-rho 0.25/0.476 −/ − 6, 161, 949/111, 715, 468

VRKM 0.147 / 0.25 2.04 × / 2.00 × 6, 134, 762 / 110, 337, 072

VRKM ++ 0.069 / 0.139 h 4.30 × / 3.60 × 6, 132, 739 / 110, 177, 936

the given time. Therefore, we shut them down when we find that

they cannot decrease the objective loss to the baseline, and collect

their total time consumption. Speedup is computed by dividing the

time consumption of batch KM . If an algorithm cannot decrease the

Y. Zhao et al. / Neurocomputing 307 (2018) 184–194 191

Fig. 6. The comparison of the convergence performance on four datasets by varying the epoch size.

objective loss to the baseline, it has no speedup. Additionally, Loss

is the final objective loss before those algorithms are shut down.

We can obtain some advantages of our methods from Table 3 .

First, we can find that both VRKM and VRKM ++ obtain significant

speedup on the time consumption. Generally, VRKM obtains more

than 2 × speedup, and VRKM ++ obtains more than 4 × speedup.

The speedup becomes more significant on large datasets. As we

have shown, the speedup of VRKM and VRKM ++ benefits from

the variance reduced gradients when we update the cluster cen-

ters. Second, both VRKM and VRKM ++ reduce the objective loss

more effectively than the other methods. This observation verifies

the advantage of VRKM and VRKM ++ again. The reason is that the

computational cost of VRKM and VRKM ++ are comparable to the

SGD variant of k-means. Meanwhile, SVRG reduces the stochastic

noise effectively, and updates the parameters by using a constant

learning rate. It is highlighted that VRKM ++ performs best on the

decrease of the objective loss and the time consumption. The rea-

son is that VRKM ++ does not need to compute the batch gradi-

ent at every epoch, which decreases much computational cost of

VRKM.

Epoch size: We provide the comparison of the convergence per-

formance by varying the epoch size. As illustrated in Fig. 6 , we can

find that the settings of the epoch size have a slight impact on the

convergence performance and the decrease of the objective loss.

By varying the epoch size from

1
4 n to 2 n , the performance does

not have much improvement, especially for large datasets. Based

on the observation, we recommend to set the epoch size to be

comparable to the size of the training dataset such as 0.5 n or n .

This setting of the epoch size is good enough to converge the pa-

rameter and decrease the objective loss.

Learning rate: As illustrated in Fig. 7 , the comparison of the con-

vergence performance is conducted by varying the learning rate.

We use η0 =

K
n as a baseline, and vary the learning rate by mul-

tiplying a positive integer. Here, n and K represents the number

of instances and clusters, respectively. Generally, it shows that a

larger learning rate improves the convergence performance. How-

ever, when the learning rate is very large, the converge perfor-

mance is impaired, e.g. the red line in Fig. 7 (c) and the blue and

purple lines in Fig. 7 (d). We can observe that the learning rate can

be set much larger than the baseline for large datasets. For exam-

ple, when the learning rate η is larger than 100 η0 on the dataset

Oxford, the improvement of the convergence performance is still

significant. In fact, although the baseline, i.e. η0 =

K
n is conservative

for VRKM and VRKM ++ , they still outperform the other methods

on the convergence performance. We recommend this setting of

the learning rate when conducting VRKM and VRKM ++ for large-

scale clustering tasks.

6.3. Clustering performance

The clustering performance is compared on CIFAR-100 and

Caltech-256. We adopt three metrics, namely: ACC, NMI, and Pu-

192 Y. Zhao et al. / Neurocomputing 307 (2018) 184–194

Fig. 7. The comparison of the convergence performance on four datasets by varying the learning rate. (For interpretation of the references to color in this figure, the reader

is referred to the web version of this article.)

rity. In experiments, we repeat every algorithm for ten times by

using random seeds as the initial cluster centers. Note that the

clustering results are yielded by running those algorithms for a

given time. For every algorithm, when the time is exhausted, it will

be terminated. Then, we begin to collect the results. As illustrated

in Table 4 , those values out of parentheses are the mean values.

Those values in the parentheses represent the variance. Here, the

variance is the maximal difference between the mean and the val-

ues yielded by all the algorithms. Note that we extract those fea-

tures from images, but we do not conduct fine-tuning for those

features.

VRKM and VRKM ++ have the same clustering performance for

the clustering tasks, and both of them have advantages over their

counterparts. We can also find that SGD variant of k-means has

the worst performance due to the much stochastic noise. Mini-

batch k-means performs better than the SGD variant of k-means,

but less than the batch k-means. The reason is that the mini-batch

k-means updates the parameter by sampling a mini-batch of in-

stances, which reduces part of the stochastic noise. Besides, al-

though the batch variant of k-means uses the full gradients to up-

date the cluster centers, it usually performs fewer iterations than

VRKM and VRKM ++ for the given time. Therefore, its clustering

performance is not better than our proposed methods. By contrast,

both VRKM and VRKM ++ update their parameters by using the

Table 4

The comparison of clustering performance on CIFAR-100 and Caltech-256.

Dataset CIFAR-100

ACC NMI Purity

Batch KM 0.2148(0.0015) 0.3701(0.0012) 0.2410(0.0 0 06)

Mini-batch KM 0.2122(0.0026) 0.3546(0.0024) 0.2267(0.0012)

SGD-KM 0.1968(0.0034) 0.3357(0.0032) 0.2079(0.0015)

growbatch-rho 0.2155(0.0023) 0.3592(0.0020) 0.2303(0.0011)

VRKM 0.2246(0.0018) 0.3742(0.0014) 0.2488(0.0 0 09)

VRKM ++ 0.2246(0.0018) 0.3742(0.0014) 0.2488(0.0 0 09)

Dataset Caltech-256

ACC NMI Purity

Batch KM 0.4736(0.0 0 09) 0.6817(0.0013) 0.5489(0.0011)

Mini-batch KM 0.4395(0.0012) 0.6608(0.0016) 0.5091(0.0019)

SGD-KM 0.4259(0.0017) 0.6255(0.0022) 0.4625(0.0024)

growbatch-rho 0.4758(0.0015) 0.6750(0.0017) 0.5411(0.0017)

VRKM 0.4969(0.0011) 0.6929(0.0016) 0.5686(0.0014)

VRKM ++ 0.4969(0.0011) 0.6929(0.0016) 0.5686(0.0014)

variance reduced gradients, and perform k-means more efficiently.

In other words, they finish more iterations than the previous meth-

ods for the given time. Thus, they outperforms the previous meth-

ods, and obtain the best clustering performance.

Y. Zhao et al. / Neurocomputing 307 (2018) 184–194 193

7. Conclusion

SVRG is effective to reduce the stochastic noise. However, it is

challenging to be used in k-means due to the drift of the cluster

centers. In the paper, we propose a position correction mechanism

to solve such challenging problem, and use a constant learning

rate to update the parameter in k-means. Furthermore, we present

two variants of variance reduced k-means: VRKM and VRKM ++ .

VRKM ++ does not have to compute the batch gradient at every

epoch, thus decreasing much computational cost than VRKM.

Extensive empirical studies show that both VRKM and VRKM ++

are efficient to conduct large-scale k-means clustering tasks, and

outperform the state-of-the-art method significantly.

Acknowledgment

This work was partially supported by the National Natural Sci-

ence Foundation of China (Project no. 61672528 and 61671463). We

thank for the help provided by Prof. Xinzhong Zhu who is with the

college of Mathematics, Physics and Information Engineering, Zhe-

jiang Normal University, Jinhua, China. Additionally, we thank Cix-

ing intelligent manufacturing research institute, Cixing textile au-

tomation research institute, Ningbo Cixing corporation limited and

Ningbo Cixing robotics company limited because of their financial

support and application scenarios.

References

[1] S. Ray , R.H. Turi , Determination of number of clusters in k-means clustering
and application in colour image segmentation, in: Proceedings of the Interna-

tional Conference on Advances in Pattern Recognition and Digital Techniques,
1999, pp. 137–143 .

[2] S. Chawla , A. Gionis , k-means–: a unified approach to clustering and outlier

detection, in: Proceedings of the SIAM International Conference on Data Min-
ing, SIAM, 2013, pp. 189–197 .

[3] P. Pantel , D. Lin , Discovering word senses from text, in: Proceedings of the
ACM International Conference on Knowledge Discovery and data mining, 2002,

pp. 613–619 .
[4] S. Shalev-Shwartz , S. Ben-David , Understanding Machine Learning: From The-

ory to Algorithms, Cambridge University Press, 2014 .
[5] L. Bottou , Y. Bengio , et al. , Convergence properties of the k-means algorithms,

in: Proceedings of the Advances in Neural Information Processing Systems,

1995, pp. 585–592 .
[6] D. Sculley , Web-scale k-means clustering, in: Proceedings of the International

Conference on World Wide Web, Raleigh, USA, 2010, pp. 1177–1178 .
[7] R. Johnson , T. Zhang , Accelerating stochastic gradient descent using predictive

variance reduction, in: Proceedings of the Advances in Neural Information Pro-
cessing Systems, Lake Tahoe, USA, 2013, pp. 315–323 .

[8] S. Lloyd , Least squares quantization in PCM, IEEE Trans. Inf. Theory 28 (2)

(1982) 129–137 .
[9] J. Newling , F. Fleuret , Nested mini-batch k-means, in: Proceedings of the Ad-

vances in Neural Information Processing Systems, 2016 .
[10] Y. Ding , Y. Zhao , X. Shen , M. Musuvathi , T. Mytkowicz , M. Musuvathi , Yinyang

k-means: a drop-in replacement of the classic k-means with consistent
speedup, in: Proceedings of the International Conference on Machine Learn-

ing, 2015, p. 579587 .

[11] X. Shen , W. Liu , I. Tsang , F. Shen , Q.-S. Sun , Compressed k-means for large-scale
clustering, in: Proceedings of the AAAI Conference on Artificial Intelligence,

2017, pp. 895–903 .
[12] L. Bottou, F.E. Curtis, J. Nocedal, Optimization methods for large-scale machine

learning, (2016). Arxiv: 1606.04838 .
[13] A. Defazio , F. Bach , S. Lacoste-Julien , SAGA: a fast incremental gradient method

with support for non-strongly convex composite objectives, in: Proceedings

of the Advances in Neural Information Processing Systems, Montréal, Canda,
2014, pp. 1646–1654 .

[14] M. Schmidt , N. Le Roux , F. Bach , Minimizing finite sums with the stochastic
average gradient, Math. Program. (2013) 1–30 .

[15] J. Konecn ̀y, P. Richtárik, Semi-stochastic gradient descent methods 2 (2.1)
(2013) 3 . Arxiv: 1312.1666 .

[16] L. Zhang , M. Mahdavi , R. Jin , Linear convergence with condition number in-

dependent access of full gradients, in: Proceedings of the Advances in Neural
Information Processing Systems, Lake Tahoe, USA, 2013, pp. 980–988 .

[17] Z. Allen-Zhu , Y. Yuan , Improved SVRG for non-strongly-convex or sum-of-non–
convex objectives, in: Proceedings of the International Conference on Machine

Learning, New York, 2016 .
[18] Z. Shen , H. Qian , T. Zhou , T. Mu , Adaptive variance reducing for stochastic gra-

dient descent, in: Proceedings of the International Joint Conference on Artifi-
cial Intelligence, 2016 .

[19] J. Kone ̌cný, J. Liu , P. Richtárik , M. Takáč , Mini-batch semi-stochastic gradient
descent in the proximal setting, IEEE J. Sel. Topics Signal Process. 10 (2) (2014)

242–255 .

[20] C. Tan , S. Ma , Y.H. Dai , Y. Qian , Barzilai–Borwein step size for stochastic gradi-
ent descent, in: Proceedings of the Advances in Neural Information Processing

Systems, 2016 .
[21] J. Philbin , O. Chum , M. Isard , J. Sivic , A. Zisserman , Object retrieval with large

vocabularies and fast spatial matching, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2007 .

[22] M. Perd , O. Chum , J. Matas , Efficient representation of local geometry for large

scale object retrieval, in: Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2009, pp. 9–16 .

[23] A. Torii , J. Sivic , M. Okutomi , T. Pajdla , Visual place recognition with repetitive
structures, IEEE Trans. Pattern Anal. Mach. Intell. 37 (11) (2015) 2346–2359 .

[24] A. Krizhevsky, G. Hinton, Learning multiple layers of features from tiny im-
ages, Master’s thesis, Department of Computer Science, University of Toronto,

Citeseer, 2009.

[25] G.S. Griffin , A.D Holub , P. Perona , Caltech-256 Object Category Dataset, Califor-
nia Institute of Technology, 2007 .

[26] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale
image recognition, Arxiv: 1409.1556 (2014).

Yawei Zhao is currently a Ph.D. candidate in Computer
Science from the National University of Defense Technol-

ogy, China. His research interests include asynchronous

and parallel optimization algorithms, pattern recognition
and machine learning.

Yuewei Ming received the M.S. degree from the National

University of Defense Technology in 2013 and the B.S.
degree from Sichuan University in 2011. He is currently

a Ph.D. candidate at the National University of Defense
Technology. His research interests include distributed and

parallel optimization and scalable machine learning sys-

tems.

Xinwang Liu received the Ph.D. degree from National

University of Defense Technology (NUDT), China. He is

now Assistant Researcher of School of Computer Sci-
ence, NUDT. His current research interests include kernel

learning and unsupervised feature learning. Dr. Liu has
published 40+ peer-reviewed papers, including those in

highly regarded journals and conferences such as IEEE T-
IP, IEEE T-NNLS, ICCV, AAAI, IJCAI, etc. He served on the

Technical Program Committees of IJCAI 2016–2017, AAAI

2016–2018.

En Zhu received the M.S. and Ph.D. degree in Computer

Science from the National University of Defense Technol-

ogy, China, in 2001 and 2005, respectively. He is now

working as a full professor in the School of Computer Sci-

ence, National University of Defense Technology, China.
His main research interests include pattern recognition,

image processing, and information security.

https://doi.org/10.13039/501100001809
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0001
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0002
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0003
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0004
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0005
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0006
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0007
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0008
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0009
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0010
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0011
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0011
http://arxiv.org/abs/1606.04838
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0012
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0013
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0013
http://arxiv.org/abs/1312.1666
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0015
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0016
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0017
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0018
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0019
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0020
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0021
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0022
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0023
http://refhub.elsevier.com/S0925-2312(18)30458-2/sbref0023
http://arxiv.org/abs/1409.1556

194 Y. Zhao et al. / Neurocomputing 307 (2018) 184–194

Kaikai Zhao is currently a graduate student in Commu-

nication & Information Engineering from Naval Aeronau-
tical University, China. His research interests include pat-

tern recognition and machine learning.

Jianping Yin received his M.S. degree and Ph.D. degree in

Computer Science from the National University of Defense
Technology, China, in 1986 and 1990, respectively. He is a

professor of computer science in the Dongguan University

of Technology. His research interests involve artificial in-
telligence, pattern recognition, algorithm design, and in-

formation security.

	Large-scale k-means clustering via variance reduction
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Data structure and basic definitions
	3.2 Optimization view of k-means
	3.3 SVRG: SGD with the variance reduction technique

	4 Variance reduced k-means clustering
	4.1 Position correction
	4.2 The constant learning rate

	5 Algorithm optimization
	5.1 VRKM++: VRKM without batch gradients
	5.2 Parameter settings

	6 Empirical studies
	6.1 Datasets
	6.2 Convergence performance
	6.3 Clustering performance

	7 Conclusion
	 Acknowledgment
	 References

